
A Software Bus for Thread Objects

John Callahan1

Dehuai Li
Department of Statistics and Computer Science

Concurrent Engineering Research Center
West Virginia University

Abstract

We have implemented a software bus [1] for lightweight threads in an object-oriented programming
environment that allows for rapid recofniguration and reuse of thread objects in discrete-event simulation
experiments. While previous research in object-oriented, parallel programming environments have
focused on direct communication between threads, our lightweight software bus, called the MINIBUS,
provides a means to isolate threads from their contexts of execution by restricting communications
between threads to message-passing via their local ports only. The software bus maintains a topology of
connections between these ports. It routes, queues, and delivers messages according to this topology.
This approach allows for rapid reconfiguration and reuse of thread objects in other systems without
making changes to the specifications or source code. We present a layered approach that provides the
needed transparency to developers, discuss example cases of using the MINIBUS, and the value of bus
architectures in building and conducting simulations of discrete-event systems.

Catagory: research
Topic Areas: tools and environments, components and frameworks, concurrent systems

1 Introduction

Expressive programming languages and run-time mechanisms are needed to implement message-passing

architectures between processes in parallel and distributed computing environments. Most programming

languages provide abstractions like procedure call and method invocation to implement synchronous

communications between components in sequential programs. In parallel and distributed computing

environments, however, indirect and asynchronous mechanisms are also needed to provide

communications between multiple, independently executing processes. Such mechanisms permit rapid

reconfigurations of systems since each component is highly independent of other processes.

1Please contact John R. Callahan, Assistant Professor, Department of Statistics and Computer Science,
West Virginia University, Morgantown, WV 26506-6330, Phone: 304-293-3607, Fax: 304-293-7541,
callahan@cs.wvu.edu. This work is supported by NASA Grant NAG 5-2129, NLM Grant N01-LM-3-
3525, and ARPA Grant MDA 972-91-J-1022.

1

A software bus [1] is an abstraction for distributed and parallel programming environments that provides

for indirect and asynchronous communications between processes. A software bus routes, queues, and

delivers messages between client processes and provides a standard set of communication primitives to all

client processes. Each client process is viewed as a self-contained module that owns a unique, local set of

"bus ports" on which it can send and receive messages. All communication is performed on local ports

only. A bus application consists of a set of client processes and a "bus" that maintains a map of

connections between client ports. A message sent on port X of process A is delivered by the bus to port Y

of process B if the connection A.X → B.Y is part of the bus topology. Software bus systems share much

in common with event-based approaches, but the software bus abstraction subsumes event-based models

by allowing more structured forms of interactions between processes. Events can be simulated in the bus

topology by routing all send ports to all receive ports.

We have implemented a version of the POLYLITH software bus for lightweight threads based on the

AWESIME [2] class library. The AWESIME class library is implemented in C++ and provides a parallel

programming environment for lightweight threads in a single address space. Threads in AWESIME are

created as instances of derived subclasses of the abstract Thread class. Physical processors are simulated

by a CPU class that can contain thread instances. Thread instances are placed into CPU instances and the

CPU is started. At this point, each CPU instance schedules and executes its threads until a termination

condition. There are several subclasses of CPU (e.g., MULTIFIFOMUX) and each subclass schedules

execution of its threads according to different scheduling algorithms.

Our implementation of a lightweight software bus, called the MINIBUS, provides a mechanism for indirect

and synchronous communication between threads. Normally, AWESIME threads communicate by directly

invoking methods of other Thread instances, through shared variables or by direct message passing

primitives. This means that threads are highly coupled to their context of execution with other threads.

The systems in which they are embedded are not easily reconfigured and the threads themselves not

reusable in other programs. In the MINIBUS, threads are viewed as self-contained modules that invoke

their own virtual methods to communicate through the software bus. These methods are local to instances

of the Thread subclass and implement local ports on which a thread may send and receive messages. A

separate lightweight process acts as the bus to route and queue messages between threads. This approach

allows for rapid reconfigurations and reuse of threads in other applications because indirect

communication eliminates any coupling between threads and shared variables.

Previous thread-based, parallel programming environments based on object-oriented languages [3,4] have

focused primarily on direct communications between threads in a fashion similar to CSP [5] or an events

[6]. While this is useful for some problems, the direct communications between threads is usually

accomplished by addressing recipients explicitly in the source code of the sender. This approach,

2

however, couples component designs to each other. If the context of execution changes, e.g., a different

receiver thread is used, the sender source code must be updated. In some cases, message format

differences, the use of broadcast or multicast of messages, and changes to the numbers of threads means

that a number of changes are needed to many threads as a result of the high degree of coupling. Many

components must be reimplemented because of changes to other components and changes to the structure

of the system in which a component is embedded.

This paper describes the application programmers interface (API) of the MINIBUS and shows how parallel

programs are constructed so that reconfigurations have little or no impact on the specification or

implementation of thread components. We illustrate the effectiveness and capabilities of the MINIBUS in

building simulations by reusing components in several applications and rapidly reconfiguring existing

applications with no effect on the source code of the thread components.

2 Overview

When two threads communicate directly with each other, each process must know exactly what

mechanism the other thread uses to enable communication. The design of each thread is coupled to others

in a configuration. A software bus provides a standard set of communication channels that allows each

thread to be fully encapsulated from its context of execution, thus reducing the complexity of the design

problem, and increasing code independence and reuse. In the software bus model, a thread sends

messages to the bus via local ports rather than directly to the intended receivers. The bus then routes the

message to its destination(s). There is no direct interaction between the sending and the receiving

threads.

Figure 1 illustrates communications between processes in a software bus application. Although the

processes execute independently, they all interact with the bus only through their local ports. Processes A,

B, and C may send and receive message only on their local ports. The bus routes messages between ports

depending on a given topology of connections. This topology may be changed, connections may be made

from a single port to multiple ports, and a single receive port can accept messages from multiple incoming

connections. The ability to "rewire" an application is a major advantage of the software bus model.

Processes can be added and removed from configurations, often during system execution, without

changing the internal code of individual processes [7].

3 The MINIBUS Software Bus

In the AWESIME parallel programming environment, a thread is the basic unit of parallelism. A thread is

an instance of a derived subclass of the C++ abstract class Thread . Developers create subclasses of

3

A B C

u v w x y z

client threads

port

software bus

connection

Figure 1: Communication between processes through a software bus

Thread for each type of application thread. A typical application in AWESIME is composed of a set of

instances of classes derived from the base class Thread . Each type of derived class may be used to

instantiate any number of threads in the application

AWESIME does not provide a general mechanism for communication between threads except through

direct method invocation, shared variables, and direct message passing. We have implemented a software

bus that provides an indirect, asynchronous communication mechanism between threads. In the bus

model, an additional level of subclassing is needed to implement our approach. Figure 2 illustrates the

levels in a class hierarchy needed to construct a layered communications model based on a software bus.

The top level Thread class is provided in the AWESIME package, application subclasses of Thread in

the middle layer define the specialized functionality of each thread type (i.e., the behavior of a thread is

implemented in this layer), and the interfacing classes in the bottom layer implement low-level

communications with the bus. Local ports to the bus are specified as pure virtual methods in application

class specifications that are implemented by interfacing subclasses. When a thread sends a message, its

invokes one of its own virtual methods whose implementation is found in its interfacing subclass. This

approach allows developers a high degree of flexibility in substituting different communication

technologies at the interfacing level while leaving the application level thread code unchanged. Indeed,

during development of the MINIBUS we changed the bus API several times with little or no effect to thread

code in the application layer. We discuss the details of our layered approach in the next sections.

4

Thread

Producer Consumer

P1 C2

ConsumerXProducerX

application
layer

interface
layer

threads
P2 C1

Bus

output input

output input

(pure virtual) (pure virtual)

Figure 2: Layered approach to communications between threads via a software bus

3.1 The Thread Class

The abstract class Thread is the base class for all threads in an application. Most of the details of the

Thread class are uninteresting to the casual user. All application threads must be instances of a subclass

of class Thread. Threads should only be created using the C++ new operator because the AWESIME

run-time environment manages their stacks on a dynamic heap. In addition, each subclass of class

Thread should provide implementations to support three functions: a constructor, a destructor, and a

main entry point function. First, each subclass of Thread must support its own constructor that calls the

Thread constructor with initialization arguments. Second, each subclass of Thread must implement a

destructor that cleans up any data in the class instance. Finally, each subclass of Thread must

implement a function called main defined as a virtual function in Thread . The main function is the

entry point of all threads created from the application subclass. When the thread is executed for the first

time, the main function is called by the CPU instance that contains the thread.

3.2 The Application Classes

All application classes are derived from the class Thread and form a level of abstract classes in the class

hierarchy called the application layer. Classes in this layer specify the functional behavior of threads in

the application. Application classes must provide implementations for a constructor, destructor, and main

functions. An application class specification must also specify all of its local send and receive ports as

pure virtual functions.

5

In Figures 3 and 4, we show the specification and implementation for the Producer class. The

Producer constructor will intialize the parent Thread class with a thread name, a maximum stack size

of 20000 words, a hardware memory flag (HCCM), and set the priority of any Producer threads equal

to the process identifier assigned to them. It also initializes the private member variable maxsend with

the maximum number of messages to produce. The implementation of the Producer::main method is

the main loop of any Producer thread instance. It sends maxsend number of messages and then

terminates. The messages are sent by calling the pure virtual function output that has no associated

implementation at this level or above in the class hierachy. Such functions are implemented in subclasses

of Producer in the interfacing layer.

3.3 The Interfacing Layer

The classes in the interfacing layer are derived from classes in the application layer. The interfacing

classes are the concrete classes from which thread instances are created. Each concrete class in the

interfacing layer implements the virtual functions of its parent class that represent the local ports of a

thread type. Figures 5 and 6 show the specification and implementation of the interfacing class

ProducerX derived from the Producer application class. The ProducerX constructor invokes the

bus->init method that initializes the thread with the bus thread. The output implementation sends a

message to the bus process via the method

bus->write("output","I",NULL,NULL,i)

where the first argument "output" is the name of the local port and the second argument is a description of

the types of data object passed in the message (i.e., "I" stands for a single integer). The arguments given

NULL in this case can be used to transfer port capabilities between threads. Finally, the value of the

variable i is sent in the body of the message.

A Consumer subclass of Thread and a ConsumerX subclass can be constructed in a similar fashion.

In the case of a consumer thread, a call to a virtual function input within the main loop of the

Consumer::main body will invoke the implementation of input in a ConsumerX subclass. As in

the case of the ProducerX::output function, the ConsumerX::input would be implemented by a

complementary call to receive a message via the method

bus->read("input","i",NULL,NULL,&r0)

that reads the next message on the local input port of the ConsumerX thread or blocks if the message

queue is empty. The second parameter of the bus->read function, as in the bus->write function,

6

class Producer : public Thread {
 int sent;
 int max;
public:
 Producer(char *name,int xpid,int maxsend);
 ~Producer();
 void main();
 virtual void output(int);
};

Figure 3: Producer abstract class specification

Producer::Producer(char *name,int xpid,int maxsend)
 : (name,20000,HCCM,xpid)
{
 max = maxsend;
}

void Producer::main()
{
 for(int i=0;i < maxsend;i++) {
 CERR_ALWAYS_PRE;
 cout << "Produce " << i << endl;
 CERR_POST;
 output(i);
 }
}

Figure 4: Implementation of Producer methods

class ProducerX : public Producer {
 Bus* bus;
public:
 ProducerX(Bus*,char*,int,int);
 void output(int);
}

Figure 5: ProducerX concrete class specification

ProducerX::ProducerX(Bus* b,char* name,int xpid,int max)
 : (name,xpid,max)
{
 bus = b;
 bus->init(this);
}

void ProducerX::output(int a1) {
 bus->write(this,"output","I",NULL,NULL,a1);
}

Figure 6: Implementation of output method for ProducerX class

7

represents the format of data expected to read. The data contained in the received message (an integer) is

read into variable r0 and returned as the result of the call to the virtual function input .

Using this indirect approach to communication between lightweight threads, the implementations of all

threads are completely encapsulated from their context of execution. The thread application classes can

be reconfigured and reused in new applications with no changes needed to their sources. All messages are

routed, queued, and delivered by the bus thread. Section 4 describes the implementation of the bus thread.

3.4 The main function

Figure 7 shows the main entry point for the producer-consumer application. The C++ run-time

environment first executes the main function when the program starts. The program declares pointers to

two threads for the producer and consumer and then declares an instance of MultiFifoMux class (an

AWESIME subclass of the CPU abstract class) that simulates multiple CPUs. It then creates a bus thread

and adds the bus thread to the CPU instance. Next, the program creates thread instances of the

ProducerX and ConsumerX classes and adds each thread instance to the CPU. The bus->connect

method then adds a connection to the bus topology. This connection states that any message sent by the

producer thread on its output port should be routed to the input port of the consumer thread. Finally, the

CPU instance is started via a call to its fireItUp method. The CPU instance then takes control of

program execution at this point until both of its threads have terminated.

4 The Awesime2Bus Bus

The bus thread is created by the main program and executes at a higher priority than other threads in the

application. It functions much the same as a post office with one major differemce: it collects messages

and places them into the mailboxes (i.e., queues) of intended receivers, but routes the messages according

to its toplogy not an address associated with each message. This topology may change dynamically during

execution of the application. The bus provides methods for creating connections between thread ports as

well as writing and reading via local ports. The next sections describe the details of low-level bus

operations.

8

main()
{
 Thread* p,c;
 MultiFifoMux cpu;

 Bus bus = new Bus();
 cpu.add(bus);

 cpu.add(p = new ProducerX(bus,"Producer",1,10));
 cpu.add(c = new ConsumerX(bus,"Consumer",1,10));
 (void)bus->connect(p,"output",c,"input");
 cpu.fireItUp(5,10000*4196);
}

Figure 7: Main entry point for the producer-consumer application

4.1 Writing to the Bus

The bus call used to send a message is

bus->write(thread , interface_name , tape , ret , from , w1, w2,..., wn)

where thread is a pointer to the sending thread object, interface_name is the name of an outgoing

interface, tape describes the data types of values wi,, and ret and from are used to transfer port capabilities

between threads. Port capabilities are used by threads to reply to messages received on ports with multiple

incoming connections. Any thread may write indirectly to the port of another thread given its capability

by using NULL for the interface_name argument and specifying a non-NULL capability as the ret

argument. Using capabilities, the software bus can be used to implement procedure call semantics for

threads that act as servers to multiple client threads.

4.2 Reading from a named interface

In the simple situation when there is only one interface and its name is known, we can use one bus call

each time to read a message on the interface. The call to read a message from a local port is

bus->read(thread , interface_name , tape , atape , cap , r 1,..., r n)

where thread is a pointer to the receiving thread object, interface_name is the name of the interface, tape

describes the types of variables ri, atape is a copy of the sender's tape as given in the bus->write that

originated the message, and cap is the capability sent in the bus->write call if given. The thread will

block at the bus->read call until a message arrives on the specified interface or proceeds immediately if

a message is already queued on the interface port.

9

4.3 Reading from any interface

In contrast to the situation where reading from named interfaces is applicable, there are applications in

which the messages must be processed as they come in regardless of the interfaces they are received on.

In this case, the method

iface = (char*)bus->readselect(thread , atape , ret , buffer ,sizeof(buffer))

is used to receive messages on any incoming local port where thread is a pointer to the receiving thread

object, buffer is declared as a character array, and iface is declared as a character pointer. The thread will

block at the bus->readselect call until a message arrives on any interface, or will proceed

immediately if a message is already queued. After the bus->readselect call is complete, the buffer

will contain the message and iface will point to the name of the interface where the message arrived. To

pull the variables comprising the message from buffer, use

bus->readback(buffer , tape , ret , r i ,..., r n)

where tape describes the message format and each ri is the address of a variable. The ret variable will

contain the return capability if provided in the originating bus->write invocation.

4.4 Querying the Bus for Messages

A thread can avoid making a blocking read (bus_read or bus_readselect) by first querying the bus

to find out if any messages are queued. To find out how many messages are queued on a particular

interface, the method

msgs = bus->query_ifmsgs(thread , interface_name)

is used where thread is a pointer to a thread object and interface_name is the name of an interface. The

bus->query_ifmsgs call returns the number of messages queued. It does not read any messages from

the interface, so it is generally followed by a bus->read when one or more messages are available. The

method

nmsgs = bus_query_objmsgs(thread)

is used to find out how many messages are queued on all of the thread's interfaces. This method returns

the total number of messages queued on all interfaces. It does not read any of these messages, so it is

generally followed by a bus_readselect when one or more messages are available.

10

A thread can also be notified if a message arrives on one of its ports by associating the port with a method

using the call

handle = bus->register(thread , interface_name , method)

where thread is a pointer to a thread object and interface_name is the string name of the local port. When

the message arrives on the port, the associated method is invoked. The returned handle allows the

program to disassociate the method from the local port during execution using the bus->deregister

method. Using either read , readselect or register , individual threads can either use polling or

interrupts to process incoming messages.

4.5 Implementation

The MINIBUS itself is implemented as a class from which bus instances are created. For each incoming

port, the bus allocates a semaphore-protected queue from which bus->read and query messages can

access. Each queue is an instance of the AWESIME class LOWERBOUNDEDFIFO that can contain a finite

number of messages and allows mutually exclusive access to single threads at a time. Since the bus code

is reentrant, any call to bus->write will enqueue a message on all recipient queues as determined by

the bus topology. If the queue is full, the sending thread will block until a message is removed from the

queue by the receiving thread. On the other hand, if a queue is empty and the receiving thread attempts to

read from the queue, it will block until a message is enqueued. The Awesime class LOWERBOUNDEDFIFO

takes care of all synchronization on message queues.

The bus thread has three tasks: enqueue messages, notify recipients, and maintain the topology. The bus

thread notifies other threads only if there is a message on a port with a registered method. If a thread has

registered a method associated with an incoming port, the bus interrupts the thread by calling this method

with the message. Otherwise, the bus thread only enqueues messages and maintains the connection

topology.

5 An Example

We present an example application in which the MINIBUS is used for communication between threads: the

Dining Philosophers problem. The problem involves the use of parallel threads that rely on message

passing. The Dining Philosophers problem is a classic synchronization and resource allocation problem

and similar solutions can readily be constructed from this one for other synchronization problems. We

present the source code for our solution and discuss our approach to the dining philosophers problem

using the MINIBUS.

11

5.1 The Dining Philosopher's Problem

Our solution to the dining philosophers problem involves N philosophers around a table of N chopsticks

and a shared bowl of rice. Philosophers need two chopsticks to eat, thus only N / 2 philosophers can

eat at one time. The problem is to orchestrate the actions of the philosophers to avoid deadlock. For

example, if all philosophers grabbed their left chopstick first and refused to release it until they acquired

the right chopstick, then the entire table of philosophers would deadlock. This leads to starvation. If each

philosopher picks up one chopstick and puts it down if it finds the other chopstick busy, then the

philosophers might livelock. Again, this leads to starvation.

In our solution, each philosopher determines which two chopsticks to eat with based on its assigned

process identifier and continues a cycle of eating and thinking for a fixed number of mouthfuls. Each

philosopher first tries to acquire two chopsticks, eats a mouthful, returns the chopsticks to the table, and

thinks for a moment while chewing before repeating the cycle. We define an application class Phil as a

subclass of Thread and a Table class to manage the chopsticks. Figure 8 shows the class definition

and implementation of class Phil . The Phil class constructor passes initialization arguments to the

Thread class in which each Phil instance is given the same name. The constructor then changes the

thread name to an explicit name based on an identifier number passed to the thread, using the

Thread::name method. Other variables are also initialized including the instance variable

mouthfulls that is used to keep track of total consumption of rice by the philosopher. The

Phil::main member function is the starting point for any thread instance of class Phil and it specifies

the actions of each philosopher. Each philosopher thread will follow an identical cycle: (a) get two

chopsticks; (b) eat a mouthful; (3) return the chopsticks to the table; and (4) think. Step (2) specifies that

two chopsticks are acquired but contention is resolved in the Table thread.

The virtual functions getChopsticks and returnChopsticks in the application class Phil are

implemented in the interfacing class PhilX shown in Figure 9. The member function

getChopsticks uses a bus->write call to request the use of two chopsticks represented by two

integers x and y , on the interface port name "getChopsticks". A capability is created and passed along via

the capability argument so that the receiver can respond to the sender indirectly. Since an explicit

confirmation of the request is necessary before the philosopher can proceed to eat, a bus->read call

blocks the philosopher until a reply is received (the reply has no associated data). The pair of commands

bus->write/bus->read implements procedure call semantics by blocking until a return message

granting the request arrives. In contrast, the member function returnChopsticks conducts

asynchronous communication because it only uses a bus->write call to release the two chopsticks.

12

The Table thread acts as a resource manager in the application. Its resources are N chopsticks and it

knows which chopsticks are available at any given time in order to grant permission to or hold requests to

use chopsticks. Figure 10 shows the specification and implementation of the Table application class.

The main member function continuously calls member functions getRequest and getRelease to

process incoming messages. A Table thread will follow the cycle: (1) listen to the bus for request or

release messages; (2) take appropriate actions according to the message that is received; and (3) send back

a message granting use of chopsticks if it is a request and the request can be met right away. In step (3),

the call to the virtual function grantChopsticks takes the result of the getRequest call as an

argument. This is an opaque variable type that contains return information needed in the interfacing

layer.

Figure 11 shows the specification and implementation of the interfacing class TableX . In this case, the

virtual functions getRequest and getRelease are not implemented with simple bus->read

operations which would block execution of the Table thread. Instead, the method bus-

>query_ifmsgs is used to query for messages on an interface before reading. This approach

implements a polling scheme. If a message is not present, a false condition is returned to the caller else

the incoming capability is caste into an opaque type (e.g., a pointer to an integer) and returned to the

caller in the application layer.

Figure 12 illustrates the application's main function that sets up the systems and connections between the

philosopher threads instances and the Table thread instance. First, a vector of pointers to philosophers

threads is declared. Next, a MINIBUS and CPU are created and the bus is added to the CPU instance.

Instances of the philosophers and the table threads are then created and added to the CPU. At this point,

connections between thread interface ports are added to the bus topology. Finally, the fireItUp

member function is invoked on the CPU to start the things going. This solution to the dining philosophers

problem can be reconfigured easily with additional philosophers without changes to the specification of

any application thread class or its implementation.

5 Discussion

We have used the MINIBUS environment to build simulations of several discrete event systems including

the leader election problem, an automobile cruise-control system, a simple avionics guidance, control and

navigation platform, a thermostatic control system, a satellite simulation, and a traffic light system. In

each case, we are able adjust the numbers of threads between runs of the simulations and change the

topology dynamically if necessary.

13

class Phil : public Thread {
 int pid;
 char nameBuffer[128];
 int mouthfulls;
 int nphils;
public:
 Phil(int,int);
 virtual void getChopsticks(int,int);
 virtual void returnChopsticks(int,int);
 void main();
}

Phil::Phil(int xpid,int max,int n) : ("Philosopher",50000,HCCM)
{
 pid = xpid;
 sprintf(nameBuffer,"Phil-%d",xpid);
 name(nameBuffer);
 mouthfulls = max;
 nphils = n;
}

void Phil::main()
{
 int i,next=pid % nphils + 1;
 CERR_ALWAYS_PRE;
 cerr << name() << " using chopsticks " << pid << "," << next << endl;
 CERR_POST;
 for(i=0;i < mouthfulls;i++) {
 getChopsticks(pid,next);
 CERR_ALWAYS_PRE;
 cerr << name() << " eats" << endl;
 CERR_POST;
 returnChopsticks(pid,next);
 }
}

Figure 8: Application class specification and implementation for a philosopher thread

class PhilX : public Phil {
 Bus bus;
public:
 PhilX(Bus b,int pid,int max,int n):(pid,max,n) {bus = b; bus->init(this);}
 void getChopsticks(int,int);
 void returnChopsticks(int,int);
}

void PhilX::getChopsticks(int a,int b)
{
 Capability cap;
 bus->capability(this,"getChopsticks",&cap);
 bus->write(this,"getChopsticks","II",NULL,&cap,a,b);
 bus->read(this,"getChopsticks",NULL,NULL,NULL);
}

Figure 9: Interfacing layer class specification and implementation for philosopher threads

14

class Table : public Thread {
 int nchops;
 Array* chopsticks;
public:
 Table(int);
 virtual int getRequest(int*,int*);
 virtual void grantChopsticks(int,int,int);
 virtual int getRelease(int*,int*);
 virtual int terminate();
}

Table::Table(int size) : ("Table",50000,HCCM)
{
 chopsticks = new Array(size);
 nchops = size;
 for(int i=0;i < size;i++) {
 (*chopsticks)[i] = AVAILABLE;
 }
}
void Table::main()
{
 int x,y,r;
 int count = nchops;
 while((count -= terminate()) {
 if((*chopsticks)[(int)queue1.front()]==AVAILABLE &&
 (*chopsticks)[(int)queue2.front()]==AVAILABLE) {
 x = (int)queue1.front(); y = (int)queue2.front();
 grantChopsticks((int)queueret.front(),x,y);
 queueret.deq(); queue1.deq(); queue2.deq();
 (*chopsticks)[x] = UNAVAILABLE;
 (*chopsticks)[y] = UNAVAILABLE;
 }
 if(r = getRequest(&x,&y)) {
 if((*chopsticks)[x]==AVAILABLE && (*chopsticks)[y]==AVAILABLE) {
 grantChopsticks(r,x,y);
 (*chopsticks)[x] = UNAVAILABLE;
 (*chopsticks)[y] = UNAVAILABLE;
 } else {
 queueret.enq(r); queue1.enq(x); queue2.enq(y);
 }
 }
 if(getRelease(&x,&y)) {
 (*chopsticks)[x] = AVAILABLE; (*chopsticks)[y] = AVAILABLE;
 }

 }
}

Figure 10: Application class specification and implementation for a table thread

class TableX : public Table {
 Bus bus;
public:
 TableX(Bus b,int size) : (size) { bus = b; }
}
int TableX::getRequest(int* x,int* y)
{ Capability* cap;
 if(bus->query_ifmsgs(this,"getRequest")) {
 bus->read(this,"getRequest","ii",NULL,cap,x,y); return cap;
 } else return 0;
}
TableX::grantChopsticks(int cap,int x,int y)
{
 bus->write(this,NULL,"II",cap,NULL,x,y);
}
TableX::getRelease(int* x,int* y)
{
 if(bus->query_ifmsgs(this,"getRelease")) {
 bus->read(this,"getRelease","ii",NULL,NULL,x,y); return 1;
 } else return 0;
}

Figure 11: Interfacing class specification and implementation for a table thread

15

main()
{
 Thread* phil[NPHILS],table;
 MultiFifoMux cpu;

 Bus* bus = new Bus();
 cpu.add(bus);

 cpu.add(table = new TableX(bus,NPHILS));
 for(int i=0;i < NPHILS;i++) {
 cpu.add(phil[i] = new PhilX(bus,i,10,NPHILS));
 (void)bus->connect(p[i],"getChopsticks",table,"getRequest");
 (void)bus->connect(p[i],"returnChopsticks",table,"getRelease");
 (void)bus->connect(p[i],"terminate",table,"terminate");
 }
 cpu.fireItUp(5,10000*4196);

 }

Figure 12: Main function for dining philosophers application

For example, consider a sample solution to the leader election problem consisting of four identical threads

T1, T2, T3, and T4. All threads are connected together in a ring topology. All threads start by flipping a

coin to decide if it runs. If a thread decides to run, it sends its process identifier to the next thread in the

ring, else it does nothing. Each thread then waits for messages shifted between threads to arrive from the

previous thread in the ring and compares the received value to the maximum value received so far

including its own value if it had decided to run. If the received value is greater than the current

maximum, the thread saves the value and passes it to the next thread. If the received value is smaller, the

thread does nothing. It continues this procedure for N shifts where N is the total number of threads. At

the end of this process, each thread should contain the same maximum value and its prints out this result.

We can create more complex configurations of the leader election solution by changing the topology, the

yielding method, and the number of rounds.

6 Summary

Our research group built the lightweight software bus as a testbed for running experiments on simulations

of parallel, discrete-event systems. The MINIBUS approach allows developers of discrete-event simulations

to more easily reconfigure and reuse components in a wide variety of configurations. This capability is

often needed in experiments that must run many different types of simulations. In conjunction with the

AWESIME library, we can adjust the number of CPUs, the scheduling algorithms, the queue sizes, and

other parameters in order to evaluate simulation performance. The bus approach also allows developers to

monitor and debug parallel systems by "splicing" components along connections that watch the messages

between threads.

16

We are using the splicing technique to introduce monitors that determine whether or not the behavior of

the system is correct with respect to formal specifications. By attaching monitors to connections with

assertions concerning ordering of message events, we can test whether execution patterns are legal. This

method is similar to code annotations [8], but we have extended it to a softwrae bus environment.

Finally, we developed the layered approach in order to distribute threads across actual physical processors

without the need for source code changes. It is possible to replace the interfacing classes with the

distributed version of the Polylith software bus without making changes to the application specifications

and implementations. There still exists some limitations to distribution, but our goal is to provide

developers with the ability to reconfigure their systems in distributed environments without major changes

to their components. To achieve this goal, we have used a code generator to produce the interfacing layer

code automatically from interface specifications written in a modular interconnection language (MIL) [9].

The application's main entry function that creates the Cpu, threads, and connections can also be generated

from MIL specifications. We continue to explore this mechanism as a means of increasing the flexibility

and reuse of discrete-event simulations.

7 References

[1] Purtilo, J., Polylith: An Environment to Support Management of Tool Interfaces, ACM
SIGPLAN Symposium on Language Issues in Programming Environments, Seattle, WA, June
25-28 1985, pp. 12-18.

[2] Grunwald, D., User's Guide to A Widely Extensible Simulation Environment, University of
Colorado, Boulder Technical Report.

[3] Notkin, D., Proxies: A Software Structure for Accommodating Heterogeneity, Software Practice
and Experience, April 1990, Volume 20, Number 4, pp. 357-364.

[4] Magee, J. and J. Kramer, Constructing Distributed Systems in Conic, IEEE Transactions on
Software Engineering, June 1989, Volume 15, Number 6, pp. 663-675.

[5] Hoare, C.A.R., Communicating Sequential Processes, Prentice Hall, Englewood Cliffs, NJ, 1985.

[6] Garlan, D., G. Kaiser, D. Notkin, Using Tool Abstraction to Compose Systems, IEEE Computer,
June 1992, Volume 25, Number 6, pp. 30-38.

[7] Hofmeister, C. R., Dynamic Reconfiguration in Software Buses, University of Maryland
Computer Science Department, August 1993.

[8] Belz, F. and D. Luckham, A new approach to prototyping Ada-based hardware/software systems.
In Proceedings of the ACM Tri-Ada Conference, Baltimore, MD, December 1990.

[9] J. Callahan and J. Purtilo, A packaging system for heterogeneous execution environments, IEEE
Transactions on Software Engineering, June 1991, Volume 17, Number 6, pp. 626-635.

17

18

